
Chien 2D: A Multiplatform Library to Teach
the C Language Through Games Programming

Paulo V. W. Radtke
Setor de Educação Profissional e Tecnológica

Universidade Federal do Paraná

Fabio V. Binder
Pontifı́cia Universidade Católica do Paraná

Abstract

This paper introduces Chien 2D, a C game programming library
that target problem-based learning of the C language. This ap-
proach is interesting to raise interest on students and reduce the
student dropout rate. We have considered the limitations of a beg-
giner’s C programmer, allowing appealing results with very sim-
ple programming structures, and yet providing enough features for
more complex development. The library has been successfully used
with the Games Tutorial methodology, improving students pro-
gramming performance.

Keywords:: C language, games programming, 2D games, multi-
platform

Author’s Contact:

paulo.radtke@ufpr.br
fabio.binder@pucpr.br

1 Introduction

From internet banking to social networks, most of our daily activ-
ities are assisted by computer programs. Computer programmers
have become a common presence in the most diverse environments,
helping to adapt and improve daily tasks on information systems.
However, several IT industry reports have observed that the num-
ber of open positions increases year after year [Jr. 2009]. It is also
observed that undergrad computer related courses in Brazil are af-
fected by a high student drop out rate [Takahashi 2009], and one
reason is pointed most often than others: the difficulty to learn pro-
gramming [Kinnunen and Malmi 2006].

Programming lecturers usually challenge students with synthetic
problems to exercise programming concepts. This approach usu-
ally fails to relate programming structures to solve more complex
problems, owing to limited exercise scope and laboratory time. In-
stead, students can improve their skills when challenged to solve
more complex problems that they can relate to. The problem-based
learning [Kinnunen and Malmi 2005] approach on programming
languages has students working on larger problems, where multiple
concepts are applied together. In this sense, we have used game pro-
gramming as a problem to help students to learn program the C lan-
guage. We have observed a similar approach presented in [Bayliss
and Strout 2006], which encourages the adoption of activities that
engage the students on subjects that they can relate to.

Our approach is divided in two main aspects, a Games Tutorial
methodology to steer the learning process and a programming li-
brary to provide a simple and powerful framework to develop
games. The Games Tutorial encourages teamwork on a long term
project, requiring students to identify issues and apply knowledge
unrelated to the programming course, but to the problem (game)
they are developing [Stroustrup 2010]. The Chien 2D library, de-
tailed in Section 2, is a multiplatform C game programming library,
focused on 2D graphics, which allows students to easily develop
games on C. An example to demonstrate the library is discussed in
Section 4.

This combined approach has been applied at the Pontifı́cia Univer-
sidade Católica do Paraná (PUCPR) since 2006, and at the Federal
University of Paraná (UFPR) starting 2010. The main contributions
of this work are threefold. We first observed that students that took
part of this activity improved their programming and teamwork skill

SDL_mixer

Operating System

Chien Mapa 2

Chien Audio 2

Chien 2D 2 Lua

Ator

SDL SDL_image

Chien 2D 2 Core

Figure 1: Chien 2D library architecture.

when compared to students that relied only on the tradicional ap-
proach. Next, there was a positive impact on the student drop-out
rate, as indicated by numbers prior and after the Games Tutorial
started. Both contributions are further discussed in Section 5. Fi-
nally, we provide a simple and yet powerful programming library,
which is open source under the Apache 2.0 license.

2 Chien 2D Library

Using game programming on a problem-based approach to teach
the C programming language presented us some challenges to over-
come. When students start learning C, their knowledge is limited
to the use of built in data types and simple conditional and loop
programming structures. Later on, they gain knowledge to use ar-
rays, structure their programs with modular functions and to rep-
resent heterogeneous information through data structures. Finally,
after mastering those concepts, students start working with point-
ers, dynamic memory allocation and files. The goal is to provide
a framework that students can use to develop very simple games at
the beginning, but with enough advanced features to incrementaly
exercise more complex concepts unrelated to programming. Simply
using a traditional game programming library is not adequate in this
context. Libraries such as SDL [Latinga 1998] and Allegro [Harg-
reaves 1995] demand at least intermediate C language knowledge
to perform the most trivial tasks.

The Chien 2D library achieves those requirements, and yet it pro-
vides enough advanced features to allow students to develop full
games after mastering the C programming language. A modular
design, depicted in Fig. 1 is used to divide several features into a se-
ries of smaller libraries, which can be combined as required by spe-
cific projects. The library currently wraps around the SDL library,
which provides actual access to system resources. Whereas games
have to be linked with the SDL library binaries, no knowledge of
these libraries or the underlying operating system is required. Thus,
dashed modules in Fig. 1 are indicated for completeness. After an
initial development, the library reached version 2 in 2007, which is
stable, and maintenance is dedicated to add new features or improve
performance.

The library is freely available for download at
http://code.google.com/p/chien2d/, ready for compiling un-
der GNU Linux and Windows. Whereas no official support is
provided, we have reports of students that succesfully used the
library on XCode (Mac OS X). Students start out by learning the
Chien 2D core library, moving on to other optional libraries as
both the C language knowledge improves and game complexity
increases. The following list detail the modular libraries.

• Chien 2D Core: the core library is sprite based, allowing
programmers to load images and split them up in several
animation frames, with either color key (magenta) or alpha
channel transparency. The library provides both software and
OpenGL rendering for faster operations and some extra ef-
fects. Text output is supported using bitmapped fonts gener-
ated by Bitmap Font Builder [Wetzel 2000], and basic user
input is provided. Functions are simple and manipulate only
integer values, avoiding pointer usage at early stages.

• Chien Audio: this module adds audio support to games, us-
ing two different streams, one for music and other for sound
effects, that are mixed on a simple stereo output. Most au-
dio formats are supported, being the most often used the Mi-
crosoft Wave, Ogg Vorbis and MP3. Only one music can be
played at a time, but up to 8 sound effects may be mixed at
once. At this point, the lecturer may introduce to students
relevant issues on software licensing. Among the supported
audio formats, MP3 playback requires a paid license for com-
mercial software, whereas other formats, such as Ogg Vorbis,
don’t.

• Chien Mapa: static images can be used as backgrounds for
simple games. But as complexity scalates and playfield move-
ment is required, one screen may not provide enough room.
Tilemap support allows large playfields with efficient memory
usage. This module uses tilemaps generated by Mappy [Bur-
rows 2005], supporting animated tilemaps and tags to describe
each block. The library separates the tileset (sprites) from the
actual tilemap, to allow the usage of the same tileset on sev-
eral tilemaps to reduce disk usage. Given a character bound-
ing box, the library provides basic functions to test collisions
against special tagged blocks and to avoid movements over
walls.

• Ator: game characters on action games interact with both the
environment and other characters. This module provides sup-
port to develop characters for sidescrolling and top view ac-
tion games, including gravity simulation. Character move-
ment is restricted by the environment, and when jumping on
sidescrolling games, characters will automatically fall until
they hit the floor. This module fully exercises the usage of
pointers, including a pointer to a function that implements the
actual character behavior. Also, the module introduces finite
state automata to students, using a state to describe the char-
acters current situation and events to change the state accord-
ingly.

• Chien 2D Lua: the final module binds the C language li-
braries to the Lua scripting language [Ierusalimschy et al.
2006]. This module is intended for advanced studies, usually
in the last part of a two semester C undergrad course, or at
specific game development lectures. The advantage is to pro-
vide easy manipulation of character behavior outside the pro-
gramming environment, which may allow character designers
to script characters without getting involved with the C pro-
gramming aspects.

3 Games Tutorial Methodology

Traditional books used to learn C, such as [Schildt 1997], follow
a similar structure when presenting the C programming language.
Generally speaking, topics are presented in an order similar to the
following non-exhaustive list: identifiers and data types, operators
and expressions, standard input and output, conditional and itera-
tion statements, arrays, structures and data type definition, func-
tions and structured programming, pointers and files.

Traditional game programming APIs are not easy for students that
mastered only the first four items in the previous list. However,
this is exactly what Chien 2D achieves in C, which allowed us to
formulate the Games Tutorial as an extension activity for first year
students. The Games Tutorial is planned to last one year with one
weekly meeting, the traditional length of a C programming lecture.

The Games Tutorial is divided in four stages. Each stage considers
the students current programming knowledge. Thus, any difficulties

faced by students will be directly related to recent lectures, and
solving those difficulties will actually improve their programming
knowledge. The following list details the four stages developed
during the Games Tutorial, each with a half semester length.

• Game project and architecture: the first stage introduces
2D game concepts, such as sprites, tilemaps, graphics and au-
dio file formats and animation. We also introduce a simple
software development lifecycle, focused on games, from re-
quirements to testing and documentation. A synthetic game
project is discussed, and students are encouraged to choose a
project and write a document detailing their design.

• Simple game development: the Chien 2D library is presented
through examples and challenges to modify these examples.
Section 4 details a simple baloon pop game.

• Prototyping: here students implement the user interface
(menus) for their project.A very basic game interface is ex-
pected at this point.

• Full game development: the final stage has students imple-
menting the actual game code. Students also have to provide
a website for their game and a manual, detailing the instal-
lation procedure and gameplay rules. Finally, a local game
fair is organized yearly, after the Games Tutorial activities is
completed, so students can present their work to the public.

Being an activity related to the programming language lecture, it is
important that both activities are synchronized. Students will feel
unconfortable if topics used during the Games Tutorial have not
yet been introduced on the regular lecture. As an optional activity,
integrating it as part of the student grading on the programming
lecture will help raise interest among students. This in turn tends
to help students, as the extra exercise helps them consolidate and
improve their programming language knowledge.

Also, the Games Tutorial methodology is in no way tied to the C
language and Chien 2D. We have also used the same methodology
with JavaME at both PUCPR and UFPR and results were encour-
aging. However, careful planning must be made in order to select
a suitable programming approach to another context. Otherwise,
students may become frustrated by having difficulties to learn both
programming and game development.

4 Programming Example

To illustrate game development using only basic C and Chien 2D
function calls, a ballon pop game is demonstrated in this section.
This example is the last one on a four stages incremental example
set. Each example challenges students to try out their programming
skills, in order to improve the application, as adding more balloons
or using different sprite colors for each balloon. The final example
is the starting point for a complete casual game, where the student
can implement menu navigation, high score tables and incremen-
tal game difficulty. This approach allows students to both learn the
Chien 2D library and practice C programming. Unlike synthetic
lecture examples to illustrate the C statements, the concrete results
obtained through those examples encourage students to improve
them and, in consequence, to better understand those statements
and functions. The examples are available at the official Chien 2D
library repository at http://code.google.com/p/chien2d/, under the
Exemplos/sbgames folder. Instructions to build, install the library
and compile the examples is available on README files for both
GNU Linux and Windows plaftforms.

The balloon pop game used to introduce the library is detailed in
Listing 1. It loads a 35x50 pixels balloon image, a 21x21 pixels
mouse cursor and a 64 pixels tall font. It sets up a windowed game
screen of 800x600 pixels and allows the player to pop ballons, keep-
ing track of the current player score. To compile this example on a
GNU environment with the g++ compiler, we can use the following
command:

g++ exemplo04.cpp -o exemplo04 -lGL -lGLU
-lSDL -lSDL_image -lc2d2

The only library include used refers to the core Chien 2D library,
c2d2/chien2d2.h, and defines all core functions and symbolic con-
stants. The balloons position are stored in the baloes array, where
each line indicates the (x, y) balloon’s coordinate. The conta aux-
iliar variable is used in for loops, and the score variable is used
to track the player’s current score. The mouse and teclas pointer
let the programmer access the computer mouse and keyboard. On
Chien 2D, the keyboard is managed as an indexed array of but-
tons (C2D2 Botao datatype), where each button is associated to a
key through a symbolic constant. To retrieve the buton array, we
use a pointer to C2D2 Botao and associate to it the return of the
C2D2 PegaTeclas function. Each button is a structure with three
fields, ativo, which indicates if the user is pressing the key, pres-
sionado, which indicates that the user has just pressed the key and
liberado, indicating that the user has just released the key. Each
key is indexed through symbolic contants and, on our example,
are the escape key (C2D2 ESC) and the button to close the win-
dow (C2D2 ENCERRA), which is mapped to both the graphical
icon on the window and to the ALT+F4 key combination on both
GNU Linux and windows. The mouse is a data structure of the
C2D2 Mouse type, which has fields x and y for its coordinates
inside the game window, and botoes for the mouse buttons (also
using the C2D2 Botao data type). The mouse coordinates are used
to draw the cursor inside the game loop.

Listing 1: exemplo04.cpp – balloon popping.

i n c l u d e <c2d2 / c h i e n 2 d 2 . h>
i n c l u d e <s t d i o . h>
i n c l u d e <math . h>

d e f i n e RESX 800
d e f i n e RESY 600
d e f i n e NUM BALOES 50

i n t main (i n t ac , char ∗∗av)
{

unsigned i n t ba lao , mira , f o n t e ;
i n t b a l o e s [NUM BALOES] [2] , con ta , p l a c a r =0;
C2D2 Botao ∗ t e c l a s = C2D2 PegaTeclas () ;
C2D2 Mouse ∗mouse = C2D2 PegaMouse () ;
char t e x t o [8 0] ;
i f (! C 2 D 2 I n i c i a (RESX, RESY, C2D2 JANELA ,

C2D2 DESENHO PADRAO , ” B a l oe s ”))
re turn 1 ;

C2D2 TrocaCorLimpezaTela (1 2 8 , 128 , 255) ;
f o r (c o n t a =0; con ta<NUM BALOES; c o n t a ++)
{

b a l o e s [c o n t a] [0] = random ()%RESX ;
b a l o e s [c o n t a] [1] = random ()%RESY ;

}
b a l a o = C 2 D 2 C a r r e g a S p r i t e S e t (” b a l a o . png ” ,

3 5 , 5 0) ;
mi ra = C 2 D 2 C a r r e g a S p r i t e S e t (” mira . png ” , 21 , 21)

;
f o n t e = C2D2 CarregaFonte (” i s a b e l l e 6 4 . png ” , 64) ;
i f (0 == b a l a o | | 0 == mira)
{

C2D2 Encerra () ;
re turn 1 ;

}
whi le (! t e c l a s [C2D2 ESC] . p r e s s i o n a d o && ! t e c l a s [

C2D2 ENCERRA] . p r e s s i o n a d o)
{

f o r (c o n t a =0; con ta<NUM BALOES; c o n t a ++)
{

i f (C 2 D 2 C o l i d i u S p r i t e s (mira , 0 , mouse−>x ,
mouse−>y , ba lao , 0 , b a l o e s [c o n t a] [0] ,
b a l o e s [c o n t a] [1]) && mouse−>b o t o e s [
C2D2 MESQUERDO] . p r e s s i o n a d o)

{
p l a c a r ++;
b a l o e s [c o n t a] [0] = random ()%RESX ;
b a l o e s [c o n t a] [1] = RESY ;

}
e l s e i f (−−b a l o e s [c o n t a] [1] < −35)

{
b a l o e s [c o n t a] [0] = random ()%RESX ;

b a l o e s [c o n t a] [1] = RESY ;
}

}
C2D2 LimpaTela () ;
f o r (c o n t a =0; con ta<NUM BALOES; c o n t a ++)

C2D2 DesenhaSpr i t e (ba lao , 0 , b a l o e s [c o n t a
] [0] , b a l o e s [c o n t a] [1]) ;

C2D2 DesenhaSpr i t e (mira , 0 , mouse−>x , mouse−>y
) ;

s p r i n t f (t e x t o , ” P l a c a r : %i p o n t o s ” , p l a c a r) ;
C2D2 DesenhaTexto (f o n t e , 0 , 0 , t e x t o ,

C2D2 TEXTO ESQUERDA) ;
C2D2 Sinc ron i za (C2D2 FPS PADRAO) ;

}
C2D2 RemoveSpr i teSet (b a l a o) ;
C2D2 RemoveSpr i teSet (mira) ;
C2D2 RemoveFonte (f o n t e) ;
C2D2 Encerra () ;
re turn 0 ;

}

To store the images, the unsigned integer variables balao and mira
are defined. The C2D2 Inicia function initializes the core library,
taking 5 parameters: horizontal resolution, vertical resolution,
screen mode (either C2D2 JANELA or C2D2 TELA CHEIA,
drawing method (C2D2 DESENHO PADRAO, a software mode,
or C2D2 DESENHO OPENGL, an OpenGL accelerated mode)
and a window title. If the C2D2 Inicia is successful, it returns
a true value. Otherwise it returns false, and the program should
terminate. Next we choose the background color that the screen
is cleared to with C2D2 TrocaCorLimpezaTela, which takes an
RGB triplet to define the background color (black by default). To
load the images (a sprite set), we use the C2D2 CarregaSpriteSet
function, which takes three parameters: the filename and the sprite’s
width and height. If the frame width/height are smaller than the ac-
tual image size, the image will be split up in several indexed frames.
If the image is loaded correctly and the frame size is consistent, the
function returns an unique positive identifier for the sprite set. Oth-
erwise, it returns 0 on failure. On our example, the program deini-
tialize the Chien 2D core library with C2D2 Encerra and quits.

To draw the current score we have to print its value to a string
(texto) using the sprintf C function. The core library supports
sprite based text drawing. To load a font from a prepared image,
we use the C2D2 CarregaFonte function, which takes two param-
eters: the font image filename and its size (whereas fonts must use
square sprites, spacing considers the actual character width). This
function returns the unique positive font identifier, or 0 if it failed
loading the font.

The main game loop is performed until the E
¯
SC key is pressed, or

the window is closed. The game logic first detects if the ballon has
been hit, testing if the left mouse button is pressed and both the cur-
sor and the balloon sprites are overlapping. The left mouse button
is accessed in the mouse data structure in the botoes array, indexed
by the C2D2 MESQUERDO symbolic constant. As a button, we
use the value of the pressionado field to determine that we have
to verify if we actually popped a baloon. Pixel level collision de-
tection is performed by the C2D2 ColidiuSprites function, which
returns a true or false value wether the sprites collided or not. The
function takes 8 parameters, which are actually very simple after
we divide them in two groups of four values. The first four values
are the values used to draw the first sprite (unique identifier, sprite
index, x and y position), and the next four values refer the values
used to draw the second sprite. Each time a baloon is popped, the
placar variable (the current score) is incremented. If the balloon
has not been hit, we move it and check if it has moved outside the
screen. In both situations, the balloon is respawned and the screen’s
bottom.

The game loop begins the screen drawing with C2D2 LimpaTela,
which clears the screen to the color defined by
C2D2 TrocaCorLimpezaTela (or black by default). Next
we draw the sprite using C2D2 DesenhaSprite, which takes four
parameters: the unique spriteset identifier number, the sprite index
number (0 on images with only one frame) and the coordinates on
the screen where we want to draw the sprite. Finally, the backbuffer

is displayed with C2D2 SINCRONIZA, which takes a parameter
that indicates how many frames per second the application should
run (C2D2 FPS PADRAO is 60fps).

When the game is over, clean up is performed with two func-
tions. C2D2 RemoveSpriteSet removes from memory an indi-
vidual sprite, indicated by its unique integer identifier (balao),
and C2D2 RemoveFonte does the same for a font. Finally,
C2D2 Encerra deinitializes the library. The student at this point
is challenged to perform the following tasks to improve the game:

• Simulate wind.

• Move baloons at different speeds.

• Slowly increase the balloon number.

• Limit the number of ballons that the player can miss.

• Add a bird character that the player can not hit

• Add a title and game over screens.

• Use different colors for the balloons.

5 Academic Impact

The Games Tutorial methodology was first implemented in 2006
at the Computer Science course at PUCPR, and results are already
perceived. Students now participate on game related events, and
there is a perception that the activity is relevant to learn computer
programming. Some students have even chosen the course so they
could follow the Games Tutorial. Students are motivated to de-
velop high quality projects in two ways: each activity is graded on
the Computer Science Introduction course, and the best games are
selected to participate at the Mostra de Jogos (a local game fair).
The game fair presents the students to the community, and a com-
petition takes place to select the best game, following the MDA
framework [Hunicke et al. 2004].

To verify the Games Tutorial impact, a survey was conducted with
50 students that participated in the activity betwwen 2007 and 2009
at PUCPR. For 92% of these students, the activity was relevant, and
to 52% of them, the Games Tutorial helped learning programming
concepts (functions, pointers, program structure, and files where
the most cited). The activity helped 20% of the surveyed students
to master the C programming language, and 13% of them enjoyed
working with graphics, and also 13% where satisfied with the re-
sulting game. Among the students that considered the Games Tu-
torial irrelevant, 60% had no interest on games, and did not com-
pleted their game project. A more detailed analysis is presented
in [Binder and Martins 2010]. Another relevant aspect is that stu-
dent dropout rate decreased after the Games Tutorial methodology
took place. In 2008, the computer science course at PUCPR had
115 students enrolled. In 2010, a total of 142 students were en-
rolled. Whereas we can not say that the proposed methodology was
entirely responsible for this decrease, we are confident that among
all initiatives of the computer science department, the Games Tuto-
rial helped decrease the student dropout rate.

Althought we targeted the Chien 2D library for beginners, the li-
brary also has been successfully used with post-grad students on
a game specialization course at PUCPR. When working with such
advanced programmers, the library has demonstrated effective to
develop complex games in very short time. In this context, the Lua
binding provided by Chien 2D Lua made it even faster to develop
games, as testing and balancing are done outside a traditional pro-
gramming environment.

6 Discussion

We have presented in this paper the Chien 2D library, which
was sucessfully used with the Games Tutorial methodology. The
methodology targets game development as a problem-based ap-
proach to teach the C language programming. In this problem
based learning context, the library requires beginner’s C program-
ming skills, whereas other C game development libraries require at
least intermediate C programming skills. The example detailed in

Section 4 demonstrates that basic programming skills can produce
appealing results, with enough room for students to improve the ex-
amples. The Games Tutorial combined with the Chien 2D library
had a positive impact on students, as we discussed in the previous
section.

The Chien 2D library is also open source, under the Apache 2.0
license, so other universities and groups are free to use and collab-
orate at the official repository. Licensing allows the production of
commercial products, meaning that independent game developers
also have a simple, and yet powerful library to develop or prototype
games.

Acknowledgements

The first author would like to acknowledge professors Claudio R.
V. Carvilhe and Alceu de S. Britto Jr, long time colleagues, for
their invaluable help to implement the Games Tutorial way back in
2006 at PUCPR. Both authors also acknowledge the students en-
gagement, and their feedback to improve the library over the years.
We also acknowledge professor Vidal Martins for his commitment
to the Games tutorial.

References

BAYLISS, J. D., AND STROUT, S. 2006. Games as a ”flavor” of
cs1. In Proceedings of the 37th SIGCSE technical symposium on
Computer science education, 500–504.

BINDER, F. V., AND MARTINS, V. 2010. Uma abordagem lúdica
para a aprendizagem de programação de computadores. In WEI
2010.

BURROWS, R., 2005. Mappy. http://tilemap.co.uk/mappy.php.

HARGREAVES, S., 1995. Allegro – a game programming library.
http://alleg.sourceforge.net/.

HUNICKE, R., LEBLANC, M., AND ZUBEK, R., 2004. Mda:
A formal approach to game design and game research.
http://cs.northwestern.edu/ hunicke/pubs/MDA.pdf.

IERUSALIMSCHY, R., DE FIGUEIREDO, L. H., AND CELES, W.
2006. Lua 5.1 Reference Manual. Lua.org, August.

JR., L. C., 2009. Setor de ti aponta falta de mão-de-obra qualifi-
cada. Gazeta do Povo, 13 de Maio. http://bit.ly/bQnsOg.

KINNUNEN, P., AND MALMI, L. 2005. Problems in problem-
based learning – experiences, analysis and lessons learned on an
introductory ptogramming course. Informatics in Education 4,
2, 193–214.

KINNUNEN, P., AND MALMI, L. 2006. Why students drop out cs1
course? In ICER ’06: Proceedings of the second international
workshop on Computing education research, ACM, New York,
NY, USA, 97–108.

LATINGA, S., 1998. Sdl – simple directmedia layer.
http://www.libsdl.org/.

SCHILDT, H. 1997. C: Completo e Total. Makron Books.

STROUSTRUP, B. 2010. Viewpoint what should we teach new
software developers? why? Commun. ACM 53, 1, 40–42.

TAKAHASHI, F., 2009. Matemática e ciências da computação
têm alta taxa de abandono. Folha de So Paulo, 6 de Abril.
http://bit.ly/daPZUm.

WETZEL, T., 2000. Bitmap font builder.
http://www.lmnopc.com/bitmapfontbuilder/.

